Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.919
Filtrar
1.
Sci Rep ; 14(1): 5986, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472251

RESUMO

Lead (Pb) is toxic to the development and growth of rice plants. Nanoparticles (NPs) have been considered one of the efficient remediation techniques to mitigate Pb stress in plants. Therefore, a study was carried out to examine the underlying mechanism of iron (Fe) and silicon (Si) nanoparticle-induced Pb toxicity alleviation in rice seedlings. Si-NPs (2.5 mM) and Fe-NPs (25 mg L-1) were applied alone and in combination to rice plants grown without (control; no Pb stress) and with (100 µM) Pb concentration. Our results revealed that Pb toxicity severely affected all rice growth-related traits, such as inhibited root fresh weight (42%), shoot length (24%), and chlorophyll b contents (26%). Moreover, a substantial amount of Pb was translocated to the above-ground parts of plants, which caused a disturbance in the antioxidative enzyme activities. However, the synergetic use of Fe- and Si-NPs reduced the Pb contents in the upper part of plants by 27%. It reduced the lethal impact of Pb on roots and shoots growth parameters by increasing shoot length (40%), shoot fresh weight (48%), and roots fresh weight (31%). Both Si and Fe-NPs synergistic application significantly elevated superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione (GSH) concentrations by 114%, 186%, 135%, and 151%, respectively, compared to plants subjected to Pb stress alone. The toxicity of Pb resulted in several cellular abnormalities and altered the expression levels of metal transporters and antioxidant genes. We conclude that the synergistic application of Si and Fe-NPs can be deemed favorable, environmentally promising, and cost-effective for reducing Pb deadliness in rice crops and reclaiming Pb-polluted soils.


Assuntos
Nanopartículas , Oryza , Poluentes do Solo , Oryza/genética , Silício/farmacologia , Chumbo/metabolismo , Ferro/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Poluentes do Solo/metabolismo
2.
J Hazard Mater ; 469: 134049, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522207

RESUMO

A newly isolated ureolytic bacteria, Brucella intermedia TSBOI, exhibited microbially induced calcite precipitation (MICP) which is a promising technique for the remediation of heavy metals in polluted environments. Brucella intermedia TSBOI achieved 90-100% removal of 1 mmol/L Cu2+/Pb2+/Zn2+ within 72 h. A distinctive feature lies in B. intermedia TSBOI's capacity for the transport and hydrolysis of urea, considered to be critical for its strong urease activity. This study explored the mechanisms of this capacity at the genetic, molecular and protein levels through complete genome sequencing, molecular docking and enzymatic reaction kinetics. The results revealed that, for urea hydrolysis, B. intermedia TSBOI exhibited a comprehensive urease gene cluster, with the key gene ureC demonstrating an absolute expression level approximating to 4 × 104 copies/RNA ng under optimal conditions. Results also confirmed the strong spontaneous, energy-independent binding ability of it's urease to urea, with the lowest Gibbs free energy binding site linking to the three amino acids, alanine, asparagine and serine. The urea transport gene yut presented and expressed, with the absolute expression enhanced in response to increasing urea concentrations. The significant positive correlation between ureC/yut expression levels and urease activity provided a theoretical basis for B. intermedia TSBOI's heavy metal bioremediation potential. ENVIRONMENTAL IMPLICATION: Heavy metals (Cu, Pb and Zn) were studied in this study. Heavy metals are hazardous due to their toxicity, persistence, and ability to bioaccumulate in living organisms. They can cause severe health issues, harm ecosystems, and contaminate air, water, and soil. A novel ureolytic bacteria, Brucella intermedia TSBOI, exhibited microbially induced carbonate precipitation capability was isolated which removed 90-100% of 1 mmol/L Cu2+/Pb2+/Zn2+ within 72 h. Its advantages in urea hydrolysis and transport facilitate the remediation of actual heavy metal contaminated environments.


Assuntos
Ecossistema , Metais Pesados , Urease/metabolismo , Biomineralização , Hidrólise , Chumbo/metabolismo , Simulação de Acoplamento Molecular , Metais Pesados/metabolismo , Carbonato de Cálcio/química , Bactérias/metabolismo , Solo/química , Ureia/metabolismo
3.
Water Res ; 254: 121405, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447376

RESUMO

The accumulation and transformation of lead (Pb) and arsenic (As) during the digestion of sewage sludge (SS) by black soldier fly larvae (BSFL) remain unclear. In this study, we used 16 s rRNA and metagenomic sequencing techniques to investigate the correlation between the microbial community, metalloregulatory proteins (MRPs), and Pb and As migration and transformation. During the 15-day test period, BSFL were able to absorb 34-48 % of Pb and 32-45 % of As into their body. Changes in bacterial community abundance, upregulation of MRPs, and redundancy analysis (RDA) results confirmed that ZntA, EfeO, CadC, ArsR, ArsB, ArsD, and ArsA play major roles in the adsorption and stabilization of Pb and As, which is mainly due to the high contribution rates of Lactobacillus (48-59 %) and Enterococcus (21-23 %). Owing to the redox reaction, the regulation of the MRPs, and the change in pH, the Pb and As in the BSFL residue were mainly the residual fraction (F4). The RDA results showed that Lactobacillus and L.koreensis could significantly (P < 0.01) reduce the reducible fraction (F2) and F4 of Pb, whereas Firmicutes and L.fermentum can significantly (P < 0.05) promote the transformation of As to F4, thus realizing the passivation Pb and As. This study contributes to the understanding of Pb and As in SS adsorbed by BSFL and provides important insights into the factors that arise during the BSFL-mediated migration of Pb and As.


Assuntos
Arsênio , Dípteros , Eliminação de Resíduos , Animais , Larva/metabolismo , Esgotos , 60659 , Chumbo/metabolismo , Alimentos , Biotransformação , Bactérias , Lactobacillus
4.
J Trace Elem Med Biol ; 83: 127420, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432121

RESUMO

BACKGROUND: Lead (Pb) poisoning posing a crucial health risk, especially among children, causing devastating damage not only to brain development, but also to kidney function. Thus, an urgent need persists to identify highly effective, safe, and low-toxicity drugs for the treatment of Pb poisoning. The present study focused on exploring the protective effects of Se on Pb-induced nephrotoxicity in weaning rats and human renal tubular epithelial cells, and investigated the possible mechanisms. METHODS: Forty weaning rats were randomly divided into four groups in vivo: control, Pb-exposed, Pb+Se and Se. Serum creatinine (Cr), urea nitrogen (BUN) and hematoxylin and eosin (H&E) staining were performed to evaluate renal function. The activities of antioxidant enzymes in the kidney tissue were determined. In vitro experiments were performed using human renal tubular epithelial cells (HK-2 cells). The cytotoxicity of Pb and Se was detected by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Inverted fluorescence microscope was used to investigate cell morphological changes and the fluorescence intensity of reactive oxygen species (ROS). The oxidative stress parameters were measured by a multi-detection reader. Nuclear factor-erythroid-2-related factor (NRF2) signaling pathways were measured by Western blot and reverse transcription polymerase chain reaction (RT-PCR) in HK-2 cells. RESULTS: We found that Se alleviated Pb-induced kidney injury by relieving oxidative stress and reducing the inflammatory index. Se significantly increased the activity of the antioxidant enzymes glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), whereas it decreased the excessive release of malondialdehyde (MDA) in the kidneys of weaning rats and HK-2 cells. Additionally, Se enhanced the antioxidant defense systems via activating the NRF2 transcription factor, thereby promoting the to downstream expression of heme oxygenase 1. Furthermore, genes encoding glutamate-cysteine ligase synthetase catalytic (GCLC), glutamate-cysteine ligase synthetase modifier (GCLM) and NADPH quinone oxidoreductase 1 (NQO1), downstream targets of NRF2, formed a positive feedback loop with NRF2 during oxidative stress responses. The MTT assay results revealed a significant decrease in cell viability with Se treatment, and the cytoprotective role of Se was blocked upon knockdown of NRF2 by small interfering RNA (siRNA). MDA activity results also showed that NRF2 knockdown inhibited the NRF2-dependent transcriptional activity of Se. CONCLUSIONS: Our findings demonstrate that Se ameliorated Pb-induced nephrotoxicity by reducing oxidative stress both in vivo and in vitro. The molecular mechanism underlying Se's action in Pb-induced kidney injury is related to the activation of the NRF2 transcription factor and the activity of antioxidant enzymes, ultimately suppressing ROS accumulation.


Assuntos
Antioxidantes , Selênio , Criança , Humanos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Chumbo/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/farmacologia , Desmame , Estresse Oxidativo , Glutationa/metabolismo , Células Epiteliais , Rim/metabolismo , RNA Interferente Pequeno/metabolismo
5.
Sci Total Environ ; 923: 171427, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432362

RESUMO

Earthworms play vital functions affecting plant growth and metal accumulation from downground to aboveground. Soil metal mobilization may be combined with use of earthworm and hyperaccumulator-Solanum nigrum to improve its remediation efficiency. Understanding the effects of specific-species earthworm belonging to different ecological categories on mechanisms underlying of S. nigrum is critical for metal-polluted remediation. However, seldom studies concerned earthworm-assisted phytoremediation of metal contaminated soil in Northern China. This study investigated the effects of earthworm (Eisenia fetida, Amynthas hupeiensis and Drawida gisti) on S. nigrum with exposure to uncontaminated and [Cd-As-Cu-Pb]-contaminated soil (referred to as S0 and S1) for 60 days, respectively. In S1 soil, A. hupeiensis (anecic) had stronger effects on growth and metal accumulation in the organs (root, stem, and leaf) of S. nigrum than D. gisti (endogeic) and E. fetida (epigeic), attributing to their ecological category. The BAF values of S. nigrum were generally ranking in Cd (0.66-5.13) > As (0.03-1.85) > Cu (0.03-0.06) > Pb (0.01-0.05); the BAFCd values were ranking in leaf (2.34-5.13) > root (1.96-4.14) > stem (0.66-1.33); BAFAs, BAFCu, and BAFPb were root (0.04-1.63) > stem (0.01-0.09) ≈ leaf (0.01-0.06). A. hupeiensis decreased the TF values of S. nigrum from the roots to the shoots. Co-effects of metal stress and earthworm activity on metal uptake by shoots suggested that A. hupeiensis increased the uptake of As, Cu, and Pb (by 56.3 %, 51.5 %, and 16.2 %, p < 0.05), but not Cd, which appeared to remain steady for prolonged durations. Alterations in the integrated biomarker response index version 2 (IBRv2) values demonstrated that A. hupeiensis (12.65) improved the resistance capacity (stimulated GSH, SnGS1, and SnCu-SOD) of S. nigrum under metal-containing conditions, compared with E. fetida and D. gisti (IBRv2 were 9.61 and 9.11). This study may provide insights into the patterns of 'soil-earthworm-plant system' on improving remediation efficiency of S. nigrum, from the perspective of earthworm ecological niche partitioning.


Assuntos
Oligoquetos , Poluentes do Solo , Solanum nigrum , Animais , Cádmio/análise , Oligoquetos/fisiologia , Solanum nigrum/metabolismo , Chumbo/metabolismo , Poluentes do Solo/análise , China , Solo , Biodegradação Ambiental
6.
Ecotoxicol Environ Saf ; 274: 116194, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479312

RESUMO

Lead (Pb) is one of the most dreadful non-essential elements whose toxicity has been well reported worldwide due to its interference with the major plant functions and its overall yield. Bioremediation techniques comprising the application of beneficial microorganisms have gained attention in recent times owing to their ecofriendly nature. Addition of organic matter to soil has been reported to stimulate microbial activities. Compost application improves soil structure and binds toxic contaminants due to its larger surface area and presence of functional groups. Furthermore, it stimulates soil microbial activities by acting as C-source. So, in current study, we investigated the individual and synergistic potential of two lead (Pb)-tolerant Pseudomonas strains alongwith compost (1% w/w) in sustaining sunflower growth under Pb contaminated soil conditions. Lead chloride (PbCl2) salt was used for raising desired Pb concentration (500 mg kg-1). Results revealed that Pb stress drastically affected all the measured attributes of sunflower plant, however joint application of rhizobacteria and compost counteracted these adverse effects. Among them, co-application of str-1 and compost proved to be significantly better than str-2, as its inoculation significantly improved shoot and root lengths (64 and 76%), leaf area and leaves plant-1 (95 and 166%), 100-achene weight (200%), no. of flowers plant-1 (138%), chl 'a', 'b' and carotenoid (86, 159 and 33%) contents in sunflower as compared to control treatments. Furthermore, inoculation of Pseudomonas fluorescens along with compost increased the NPK in achene (139, 200 and 165%), flavonoid and phenolic contents (258 and 185%) along with transpiration and photosynthetic rates (54 and 72%) in leaves as compared to control treatment under Pb contamination. In addition, Pb entry to roots, shoots and achene were significantly suppressed under by 87, 90 and 91% respectively due to integrated application of compost and str-1 as evident by maximum Pb-immobilization efficiency (97%) obtained in this treatment. Similarly, bioconcentration factors for roots, shoots and achene were found to be 0.58, 0.18 and 0.0055 with associated translocation factor (0.30), which also revealed phytostabilization of Pb under combined application of PGPR and compost. Since, phytoremediation of heavy metals under current scenario of increasing global population is inevitable, results of the current study concluded that tolerant PGPR species along with organic amendments such as compost can inhibit Pb uptake by sunflower and confer Pb tolerance via improved nutrient uptake, physiology, antioxidative defense and gas exchange.


Assuntos
Compostagem , Helianthus , Poluentes do Solo , Antioxidantes/metabolismo , Helianthus/metabolismo , Pseudomonas/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Solo/química , Nutrientes , Poluentes do Solo/análise
7.
Sci Total Environ ; 919: 170790, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331279

RESUMO

The combined pollution of lead (Pb) and polystyrene microplastics (PS-MPs) is common in aquatic environments. However, the combined neurotoxicity of these two pollutants is still poorly understood. In this study, zebrafish (Danio rerio) larvae were used to assess the combined neurotoxicity and mechanism of Pb and PS-MPs at environmentally relevant concentrations. The results showed that Pb (10 µg/L) induced abnormal behavior including significantly reduced movement distance, maximum acceleration, and average velocity (P < 0.05) along with altered expression of neurodevelopment-related genes (gap43 and α1-tubulin) (P < 0.05). PS-MPs (25 µg/L, 250 µg/L; diameter at 25 µm) co-exposure not only significantly reduced the concentration of Pb in the exposed solution (P < 0.01), but also decreased the uptake of Pb by downregulating the divalent metal transporter 1 gene (dmt1) (P < 0.01), thereby alleviating Pb-induced neurotoxicity. However, to demonstrate that PS-MPs alleviate the neurotoxicity of Pb by reducing Pb uptake, upregulation of dmt1 by addition of deferoxamine (DFO, an efficient iron chelator, 100 µM) significantly increased the Pb uptake and exacerbated neurotoxicity in zebrafish. In summary, our results demonstrated that PS-MPs alleviate Pb neurotoxicity by downregulating the mRNA level of dmt1 and decreasing the Pb uptake. This study provides a new insight into the combined neurotoxicity and underlying mechanisms of PS-MPs and Pb on zebrafish.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/toxicidade , Peixe-Zebra/fisiologia , Chumbo/toxicidade , Chumbo/metabolismo , Larva/metabolismo , Metais Pesados/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
8.
BMC Genom Data ; 25(1): 22, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383301

RESUMO

OBJECTIVES: Pb stress has a negative impact on plant growth by interfering with photosynthesis and releasing reactive oxygen species, causing major risks such as heavy metal ion accumulation in the soil matrix. A proteomics experiment was conducted to determine whether protein levels of Dendrobium huoshanense changed in response to Pb stress seven to fifteen days after being sprayed with a 200 mg/L Pb (NO3)2 solution. The proteomic data we gathered provides a model for investigations into the mechanisms underlying Dendrobium plant resistance to heavy metal stress. DATA DESCRIPTION: A label-free quantitative proteomics approach was employed to examine the variations in protein expression levels of D. huoshanense at different times of Pb(NO3)2 treatment. We submitted the raw data obtained from these proteomics sequencing experiments to the ProteomeXchange database with the accession number PXD047050. 63,194 mass spectra in total were compared after being imported into the Proteome Discoverer software for database search. A total of 12,402 spectral peptides were identified with a confidence level exceeding 99%, which resulted in the identification of 2,449 significantly differential proteins. These proteins can be utilized for screening, functional annotation, and enrichment analysis of differentially expressed proteins before and after heavy metal treatment experiments.


Assuntos
Dendrobium , Metais Pesados , Dendrobium/metabolismo , Chumbo/metabolismo , Proteômica , Metais Pesados/metabolismo
9.
Environ Sci Pollut Res Int ; 31(13): 19927-19945, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367111

RESUMO

Environmental studies in Northern Poland are example of the functioning of ecophysiological relationships under anthropogenic impact. The aim of our studies was to investigate sex-dependent effects on the alterations in the concentration of chemical elements in soil samples collected from habitats of feral pigeon Columba livia f. urbana from Northern Poland, as well as feathers, biomarkers of oxidative stress, antioxidant defense, and total cholinesterase activity in tissues (liver, kidney, brain). Concentration of Si, Zn, and Pb in feathers of pigeons was significant. The levels of Si and Zn were higher in feathers of females from non-polluted, while higher Pb levels were found only in females from polluted areas (p = 0.000). This was confirmed by MANOVA of biomarkers of antioxidant defense, elements concentration, and revealing the order of effects: tissue type > environment > sex. Erythrocytes of males living in polluted areas were more fragile to hemolytic agents resulting in a higher percentage of hemolyzed erythrocytes. The effects of polluted environment on the level of carbonyl derivatives of oxidatively modified proteins compared to the effects of sex were more pronounced in the case of kidney (p = 0.000) and hepatic tissues (p = 0.000). Polluted areas were associated with significant increase in SOD activity in the brain and hepatic tissues of pigeons (p = 0.000). Health status of feral pigeons is significantly different in conditions of environmental destabilization.


Assuntos
Columbidae , Poluentes Ambientais , Animais , Feminino , Masculino , Columbidae/metabolismo , Antioxidantes/metabolismo , Chumbo/metabolismo , Poluentes Ambientais/análise , Estresse Oxidativo , Nível de Saúde , Biomarcadores/metabolismo , Colinesterases/metabolismo
10.
Plant Physiol Biochem ; 207: 108400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38295526

RESUMO

Lead (Pb) is a widespread highly toxic and persistent environmental pollutant. Plant leaves play a key role in accumulating atmospheric Pb, but its distribution in different cells and subcellular structures and the factors affecting it have been little studied. Here, Tillandsia usneoides, an indicator plant for atmospheric heavy metals, was treated with an aerosol generation device to analyze Pb contents in different cells (three types of cells in leaf surface scales, epidermal cells, mesophyll cells, vascular bundle cells), subcellular structures (cell wall, cell membrane, vacuoles, and organelles) and cell wall components (pectin, hemicellulose 1 and 2, and cellulose). Results show the different cells of T. usneoides leaves play distinct roles in the process of Pb retention. The outermost wing cells are structures that capture external pollutants, while mesophyll cells, as the aggregation site after material transport, ring cells, disc cells, epidermal cells, and vascular cells are material transporters. Pb was only detected in the cell wall and pectin, indicating the cell wall was the dominant subcellular structure for Pb retention, while pectin was the main component affecting Pb retention. FTIR analysis of cell wall components indicated the esterified carboxyl (CO) functional group in pectin may function in absorbing Pb. Pb entered leaf cells mainly in the form of low toxicity and activity to enhance its resistance.


Assuntos
Chumbo , Folhas de Planta , Tillandsia , Poluentes Ambientais , Chumbo/toxicidade , Chumbo/metabolismo , Metais Pesados/metabolismo , Pectinas/metabolismo , Folhas de Planta/metabolismo
11.
Chemosphere ; 351: 141139, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185422

RESUMO

Pyrene was designated as a remediation target in this study, and low contamination of lead (Pb) was set to induce heavy metal stress. Pseudomonas veronii and its extracellular polymeric substances (EPSs) were chosen for biofortification, with the aim of elucidating the structural, metabolic, and functional responses of soil microbial communities. Community analysis of soil microorganisms using high-throughput sequencing showed that the co-addition of P. veronii and EPSs resulted in an increase in relative abundance of phyla associated with pyrene degradation, and formed a symbiotic system dominated by Firmicutes and Proteobacteria, which involved in pyrene metabolism. Co-occurrence network analysis revealed that the module containing P. veronii was the only one exhibiting a positive correlation between bacterial abundance and pyrene removal, indicating the potential of bioaugmentation in enriching functional taxa. Biofortification also enhanced the abundance of functional gene linked to EPS production (biofilm formation-Pseudomonas aeruginosa) and pyrene degradation. Furthermore, 17 potential functional bacteria were screened out using random forest algorithm. Lead contamination further promoted the growth of Proteobacteria, intensified cooperative associations among bacteria, and increased the abundance of bacteria with positive correlation with pyrene degradation. The results offer novel perspectives on alterations in microbial communities resulting from the synergistic impact of heavy metal stress and biofortification.


Assuntos
Metais Pesados , Microbiota , Pseudomonas , Poluentes do Solo , Matriz Extracelular de Substâncias Poliméricas/química , Chumbo/metabolismo , Biodegradação Ambiental , Poluentes do Solo/análise , Pirenos/metabolismo , Bactérias/metabolismo , Metais Pesados/metabolismo , Solo/química , Microbiologia do Solo
12.
Int J Phytoremediation ; 26(7): 1168-1179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38165083

RESUMO

Our study aims to investigate the response of the unicellular alga, Haematococcus pluvialis, to the toxicity of lead and propose a low-cost, highly efficient biological adsorbent for the purification of wastewater and lead-contaminated water. The first part examines the effects of lead toxicity on certain physiological indicators of this alga. In the second part, the potential of this alga in lead removal and its adsorption capacity was assessed. The alga was cultivated in a BG11 medium and treated with lead nitrate concentrations of 10, 50, and 200 mg/L during its exponential growth. The results showed that with an increase in lead concentration up to 200 mg/L, the growth rate, chlorophyll a, chlorophyll b, carotenoid and total protein content decreased, while malondialdehyde (MDA) content increased. The astaxanthin content slightly increased at the 10 mg/L but decreased at the 200 mg/L treatment. Maximum lead adsorption was observed at 98.69% under optimal conditions, including a pH of 6, an adsorbent dose of 1 g/L, a lead concentration of 25 mg/L, a temperature of 25 °C, and an exposure time of 120 min. The results of this study demonstrate that Haematococcus pluvialis has the potential for effective lead removal from aquatic environments.


While the influence of heavy metals on certain algae species has been explored, research on the impact of lead on Haematococcus pluvialis­a microalga of significant interest for astaxanthin production­remains uncharted territory. Therefore, understanding the impact of this heavy metal and the alga's metal absorption capabilities has profound implications for biotechnology and bioremediation applications. This study promotes H. pluvialis as an economically viable lead absorbent suitable for both industrial and domestic purposes.


Assuntos
Biodegradação Ambiental , Chumbo , Microalgas , Nitratos , Poluentes Químicos da Água , Chumbo/metabolismo , Nitratos/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Microalgas/metabolismo , Clorófitas/metabolismo , Clorofíceas/metabolismo , Águas Residuárias
13.
Environ Pollut ; 344: 123443, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38278400

RESUMO

Anthropogenic pollution is identified as an important threat to bird and other wildlife populations. Many metals and toxic elements, along with poly- and perfluoroalkyl substances (PFASs) are known to induce immunomodulation and have previously been linked to increased pathogen prevalence and infectious disease severity. In this study, the house sparrow (Passer domesticus) was investigated at the coast of Helgeland in northern Norway. This population is commonly infected with the parasitic nematode "gapeworm" (Syngamus trachea), with a prevalence of 40-60 % during summer months. Gapeworm induces severe respiratory disease in birds and has been previously demonstrated to decrease survival and reproductive success in wild house sparrows. The aim of this study was to investigate whether a higher exposure to pollution with PFASs, metals and other elements influences gapeworm infection in wild house sparrows. We conducted PFASs and elemental analysis on whole blood from 52 house sparrows from Helgeland, including analyses of highly toxic metals such as lead (Pb), mercury (Hg) and arsenic (As). In addition, we studied gapeworm infection load by counting the parasite eggs in faeces from each individual. We also studied the expression of microRNA 155 (miR155) as a key regulator in the immune system. Elevated blood concentrations of Pb were found to be associated with an increased prevalence of gapeworm infection in the house sparrow. The expression of miR155 in the plasma of the house sparrow was only weakly associated with Pb. In contrast, we found relatively low PFASs concentrations in the house sparrow blood (∑ PFASs 0.00048-354 µg/L) and PFASs were not associated to miR155 nor infection rate. The current study highlights the potential threat posed by Pb as an immunotoxic pollutant in small songbirds.


Assuntos
Fluorocarbonos , Pardais , Animais , Chumbo/toxicidade , Chumbo/metabolismo , Noruega/epidemiologia , Fluorocarbonos/metabolismo
14.
Sci Total Environ ; 913: 169757, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176546

RESUMO

Few studies have related early life lead exposure to adolescent biological aging, a period characterized by marked increases in maturational tempo. We examined associations between prenatal and childhood lead exposure and adolescent biological age (mean 14.5 years) utilizing multiple epigenetic clocks including: intrinsic (IEAA), extrinsic (EEAA), Horvath, Hannum, PhenoAge, GrimAge, Skin-Blood, Wu, PedBE, as well as DNA methylation derived telomere length (DNAmTL). Epigenetic clocks and DNAmTL were calculated via adolescent blood DNA methylation measured by Infinium MethylationEPIC BeadChips. We constructed general linear models (GLMs) with individual lead measures predicting biological age. We additionally examined sex-stratified models and lead by sex interactions, adjusting for adolescent age and lead levels, maternal smoking and education, and proportion of cell types. We also estimated effects of lead exposure on biological age using generalized estimating equations (GEE). First trimester blood lead was positively associated with a 0.14 increase in EEAA age in the GLMs though not the GEE models (95%CI 0.03, 0.25). First and 2nd trimester blood lead levels were associated with a 0.02 year increase in PedBE age in GLM and GEE models (1st trimester, 95%CI 0.004, 0.03; 2nd trimester, 95%CI 0.01, 0.03). Third trimester and 24 month blood lead levels were associated with a -0.06 and -0.05 decrease in Skin-Blood age, respectively, in GLM models. Additionally, 3rd trimester blood lead levels were associated with a 0.08 year decrease in Hannum age in GLM and GEE models (95%CI -0.15, -0.01). There were multiple significant results in sex-stratified models and significant lead by sex interactions, where males experienced accelerated biological age, compared to females who saw a decelerated biological age, with respect to IEAA, EEAA, Horvath, Hannum, and PedBE clocks. Further research is needed to understand sex-specific relationships between lead exposure and measures of biological aging in adolescence and the trajectory of biological aging into young adulthood.


Assuntos
Envelhecimento , Chumbo , Masculino , Gravidez , Feminino , Humanos , Adolescente , Criança , Adulto Jovem , Adulto , Chumbo/toxicidade , Chumbo/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Metilação de DNA , Fumar , Biomarcadores/metabolismo , Epigênese Genética
15.
J Hazard Mater ; 466: 133552, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246061

RESUMO

Increasing occurrence of heavy metals (HMs) in sewage sludge threatens its widespread land utilization in China due to its potential impact on nutrient cycling in soil, requiring a better understanding of HM-induced impacts on nitrification. Herein, lab-scale experiments were conducted over 185-day, evaluating the effect of sludge-derived chromium (Cr3+), nickel (Ni2+), and lead (Pb2+) on soil nitrification at different concentrations. Quantitative polymerase chain reaction and linear regression results revealed an inhibitory sequence of gene abundance by HMs' labile fraction: ammonia-oxidizing bacteria (AOB)-ammonia monooxygenase (amoA)> nitrite oxidoreductase subunit alpha (nxrA)> nitrite oxidoreductase subunit beta (nxrB). The toxicity of HMs' incremental labile fraction decreased in the order of Ni2+>Cr3+>Pb2+, with respective threshold values of 5.01, 24.03 and 38.42 mg·kg-1. Furthermore, extending incubation time reduced HMs inhibition on ammonia oxidation, mainly related to their fraction bound to carbonate minerals. Random Forest analysis, variation partitioning analysis, and Mantel test indicated that soil physicochemical properties primarily affected nitrification genes, especially in the test of Cr3+ on AOB-amoA, nxrA, nxrB, Ni2+ for complete ammonia-oxidizing bacteria-amoA, and Pb2+ for nxrA and nxrB. These findings underline the importance of labile HMs fractions and soil physicochemical properties to nitrification, guiding the establishment of HM control standards for sludge utilization.


Assuntos
Bactérias , Metais Pesados , Bactérias/metabolismo , Archaea/metabolismo , Nitrificação , Solo/química , Esgotos/química , Cromo/toxicidade , Cromo/metabolismo , Níquel , Chumbo/metabolismo , Nitritos/metabolismo , Amônia/metabolismo , Oxirredução , Oxirredutases/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Microbiologia do Solo
16.
Environ Pollut ; 345: 123329, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38281572

RESUMO

The biological pathways linking lead exposure to adverse outcomes are beginning to be understood. Rodent models suggest lead exposure induces dysfunction within the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid regulation, a primary physiological stress response system. Over time, HPA axis and glucocorticoid dysfunction has been associated with adverse neurocognitive and cardiometabolic health, much like lead exposure. This systematic review utilized PRISMA guidelines to synthesize the literature regarding associations between lead exposure and downstream effector hormones of the HPA axis, including cortisol, a glucocorticoid, and dehydroepiandrosterone (DHEA), a glucocorticoid antagonist. We additionally determined the state of the evidence regarding lead exposure and allostatic load, a measure of cumulative body burden resultant of HPA axis and glucocorticoid dysfunction. A total of 18 articles were included in the review: 16 assessed cortisol or DHEA and 3 assessed allostatic load. Generally, the few available child studies suggest a significant association between early life lead exposure and altered cortisol, potentially suggesting the impact of developmental exposure. In adulthood, only cross sectional studies were available. These reported significant associations between lead and reduced cortisol awakening response and increased cortisol reactivity, but few associations with fasting serum cortisol. Two studies reported significant associations between increasing lead exposure and allostatic load in adults and another between early life lead exposure and adolescent allostatic load. The paucity of studies examining associations between lead exposure and allostatic load or DHEA and overall heterogeneity of allostatic load measurements limit conclusions. However, these findings cautiously suggest associations between lead and dysregulation of physiological stress pathways (i.e., glucocorticoids) as seen through cortisol measurement in children and adults. Future research would help to elucidate these associations and could further examine the physiological stress pathway as a mediator between lead exposure and detrimental health outcomes.


Assuntos
Glucocorticoides , Hidrocortisona , Adulto , Criança , Adolescente , Humanos , Glucocorticoides/toxicidade , Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Sistema Hipotálamo-Hipofisário , Estudos Transversais , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico , Desidroepiandrosterona/metabolismo , Estresse Psicológico
17.
Toxicol Lett ; 393: 69-77, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281554

RESUMO

Lead (Pb) is a non-biodegradable environmental pollutant that can lead to neurotoxicity by inducing neuroinflammation. Microglial activation plays a key role in neuroinflammation, and microglial migration is one of its main features. However, whether Pb affects microglial migration has not yet been elucidated. Herein, the effect of Pb on microglial migration was investigated using BV-2 microglial cells and primary microglial cells. The results showed that cell activation markers (TNF-α and CD206) in BV-2 cells were increased after Pb treatment. The migration ability of microglia was inhibited by Pb. Both store-operated calcium entry (SOCE) and the Ca2+ release-activated Ca2+ (CRAC) current were downregulated by microglia treatment with Pb in a dose-dependent manner. However, there was no statistical difference in the protein levels of stromal interaction molecule (STIM) 1, STIM2, or Ca2+ release-activated Ca2+ channel protein (Orai) 1 in microglia. The external Ca2+ influx and cell migration ability were restored to a certain extent after overexpression of either STIM1 or its CRAC activation domain in microglia. These results indicated that Pb inhibits microglial migration by downregulation of SOCE and impairment of the function of STIM1.


Assuntos
Sinalização do Cálcio , Microglia , Humanos , Cálcio/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Doenças Neuroinflamatórias , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Movimento Celular
18.
Ecotoxicol Environ Saf ; 271: 115991, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237395

RESUMO

Heavy metal toxicity is a significant global health concern, with particular attention given to lead (Pb) exposure due to its adverse effects on cognitive development, especially in children exposed to low concentrations. While Pb neurotoxicity has been extensively studied, the analysis and molecular mechanisms underlying the transgenerational effects of Pb exposure-induced neurotoxicity remain poorly understood. In this study, we utilized Drosophila, a powerful developmental animal model, to investigate this phenomenon. Our findings demonstrated that Pb exposure during the developmental stage had a profound effect on the neurodevelopment of F0 fruit flies. Specifically, we observed a loss of correlation between the terminal motor area and muscle fiber area, along with an increased frequency of the ß-lobe midline crossing phenotype in mushroom bodies. Western blot analysis indicated altered expression levels of synaptic vesicle proteins, with a decrease in Synapsin (SYN) and an increase in Bruchpilot (BRP) expression, suggesting changes in synaptic vesicle release sites. These findings were corroborated by electrophysiological data, showing an increase in the amplitude of evoked excitatory junctional potential (EJP) and an increase in the frequency of spontaneous excitatory junctional potential (mEJP) following Pb exposure. Importantly, our results further confirmed that the developmental neurotoxicity resulting from grandparental Pb exposure exhibited a transgenerational effect. The F3 offspring displayed neurodevelopmental defects, synaptic function abnormalities, and repetitive behavior despite lacking direct Pb exposure. Our MeDIP-seq analysis further revealed significant alterations in DNA methylation levels in several neurodevelopmental associated genes (eagle, happyhour, neuroglian, bazooka, and spinophilin) in the F3 offspring exposed to Pb. These findings suggest that DNA methylation modifications may underlie the inheritance of acquired phenotypic traits resulting from environmental Pb exposure.


Assuntos
Drosophila melanogaster , Síndromes Neurotóxicas , Animais , Criança , Humanos , Chumbo/metabolismo , Metilação de DNA , Síndromes Neurotóxicas/genética , Genoma
19.
Environ Sci Pollut Res Int ; 31(2): 2042-2052, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38051486

RESUMO

Lead (Pb) is a ubiquitous heavy metal associated with developmental and behavioral disorders. The establishment of pioneer microbiota overlaps with the development of the brain during early life, and Pb-induced developmental neurotoxicity may be partially caused by early-life microbiota dysbiosis. This study investigated the locomotor activity and the microbiota in developing zebrafish at multiple developmental time points (five days post fertilization [5 dpf], 6 dpf, and 7 dpf) under exposure to low concentrations of lead (0.05 mg/L). Time-dependent reductions in the number of activities and the average movement distance of larvae compared to the control were observed following Pb exposure. Furthermore, Pb exposure significantly altered the composition of the gut microbiota of zebrafish larvae. At the phylum level, the abundance of Proteobacteria decreased from 5 to 7 dpf, while that of Actinobacteria increased in the control groups. At the class level, the proportion of Alphaproteobacteria decreased, while that of Actinobacteria increased in the control groups. Notably, all showed the opposite trend in Pb groups. A correlation analysis between indices of locomotor activity and microbial communities revealed genus-level features that were clearly linked to the neurobehavioral performance of zebrafish. Seven genera were significantly correlated with the two performance indicators of the locomotion analysis, namely Rhodococcus, Deinococcus, Bacillus, Bosea, Bradyrhizobium, Staphylococcus, and Rhizobium. Rhizobium was dominant in zebrafish and increased in the Pb groups in a time-dependent manner. In addition, the expression levels of bdnf, trkb1, trkb2, and p75ntr changed in zebrafish from 5 to 7 dpf under Pb exposure. Collectively, these results suggest that Pb-induced neurotoxicity could potentially be treated by targeting the gut microbiota.


Assuntos
Microbiota , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Larva , Locomoção , Bactérias
20.
Environ Pollut ; 341: 122934, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967709

RESUMO

Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB. After foliar application with MA at rice anthesis stage, the content of Cd, Pb, Ni significantly decreased by 27.9-41.0%, while those of Ca and glutamate significantly increased in both NPB and fc8. Therefore, the ratios between Cd and Ca in grains of NPB (3.4‰) and fc8 (1.5‰) were greatly higher than that in grains of NPB + MA (1.1‰) and fc8+MA (0.8‰) treatments. Meanwhile, the expression of OsCEAS4,7,8,9 for the cellulose synthesis in secondary cell walls were down-regulated and cellulose content in vegetative organs of NPB and fc8 decreased by 16.7-21.1%. However, MA application significantly up-regulated the expression of GLR genes (OsGLR3.1-3.5) and raised the activity of glutamic-oxalacetic transaminease for glutamate synthesis in NPB and fc8. These results indicate that hazard risks of toxic elements in foods can be efficiently reduced through regulating cellulose biosynthesis and GLR channels in plant by combining genetic modification in vivo and malic acid application in vitro.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/análise , Cromo/metabolismo , Níquel/toxicidade , Níquel/metabolismo , Oryza/genética , Oryza/metabolismo , Regulação para Cima , Regulação para Baixo , Chumbo/metabolismo , Glutamatos/genética , Glutamatos/metabolismo , Celulose/metabolismo , Poluentes do Solo/análise , Solo , Metais Pesados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...